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Search for Heavy Neutral Gauge Bosons At DO 

The D0 Collaboration * 
Ferni National Accelerator Laboratory, Batavia, Illinois 60510 

(July 2, 1997) 

Abstract 

We report preliminary results of a search for a heavy neutral gauge boson, 
Z’, using the decay channel 2’ + ee . The data were collected with the DO 
detector at the Fermilab Tevatron during the 1994-1995 pp collider run at 
fi = 1.8 TeV and correspond to an integrated luminosity of M 90 pb-‘. 
Limits are set on the cross section times branching ratio for the process jjp + 
2’ + ee as a function of the 2’ mass. We exclude the existence of a heavy 
neutral gauge boson of mass less than 660 GeV/c2 (95% CL), assuming a 2’ 
with the same coupling strengths to quarks and leptons as the standard model 
2 boson. Combining this analysis with D0’s 1992-1993 data set increases the 
limit to mZl > 670 GeV/c2 . 

*Submitted to the International Europhysics Conference on High Energy Physics, 
August 19 - 26, 1997, Jerusalem, Israel. 
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I. INTRODUCTION 

The standard model is the generally accepted theory describing elementary particles 
and their interactions. Despite its success, it is not considered to be the ultimate theory. 
Numerous extensions to the standard model have been proposed [l], many of which include 
additional neutral gauge bosons, believed to be heavier than the standard model 2. In this 
analysis we consider a reference model of 2’ with the same coupling strengths to quarks and 
leptons as the standard model 2 and with decay to W and 2 bosons suppressed. The width 
of the 2’ is taken as the 2’ width, scaled with the mass, allowing appropriate decays to top. 

Using M 90 pb-l of data collected by the DO detector [2] at the Fermilab pp collider with 
a center of mass energy of 1.8 TeV, we search for the Breit-Wigner peak of a 2’ superimposed 
on the invariant mass spectrum expected in the standard model from 2 production and 
Drell-Yan continuum decaying to electron-positron pairs. We set a limit on the cross section 
times branching ratio for the process pi + 2’ + ee and use this limit to set a lower bound 
on the mass of our reference model 2’. 

II. EVENT SELECTION 

At D0, electrons are detected in hermetic, uranium liquid-argon calorimeters [3,4] with 
an energy resolution of about 15%/JE(Gev). Th e calorimeters have a granularity of A7 x 

Ad = 0.1 x 0.1, where 77 is the pseudorapidity and 4 is the azimuthal angle. 
The trigger requires two isolated EM clusters with transverse energy ET > 20 GeV. The 

offline electron identification requirements are applied to both EM candidates and consist 
of the following: i) the electron has to deposit at least 95% of its energy in the 21 radiation 
length electromagnetic calorimeter, ii) the transverse and longitudinal shower shapes have 
to be consistent with those expected for an electron (based on test beam measurements), 
and iii) the electron has to be isolated [5]. I n addition, at least one of the electrons has 
to have a good match between a reconstructed track in the drift chamber system and the 
shower position in the calorimeter. 

The fiducial region for electrons accepted in this analysis is 171 < 1.1 (central) or 1.5 < 
1~1 < 2.5 (forward). For electrons in the central region, energy clusters within 0.01 radians 
in 4 of module boundaries located every 0.2 radians in 4 are excluded. At least one of the 
electrons has to be central. The kinematic selection requires one electron with ET > 30 GeV 
and the second electron with ET > 25 GeV. 

The dielectron invariant mass spectrum for the 5707 events that pass this selection is 
shown in Fig. 1. 

III. BACKGROUNDS 

The QCD multijet background remaining in the sample is determined from data. To 
select the background sample, we keep events with two electromagnetic jets that pass the 
fiducial and kinematic cuts, but fail the electron identification. We then fit the invariant 
mass distribution of the candidate sample to a linear sum of a Monte Carlo simulated 2 line 
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shape plus the multijet background. We estimate the amount of background in the candidate 
sample to be m 3%. For mee > 300 GeV/c2 we expect 5.8 events from 2 continuum and 
Drell-Yan production and observe six events. Above 500 GeV/c2 we expect 0.3 events and 
observe one. 

IV. RESULTS 

A limit is obtained for our reference model 2’ production by studying the ratio 
cr(pp + 2’ + X)BR(Z’ + e+e-)/a(@ + 2 + X)BR(Z + e+e-). The relative acceptance 
for 2’ to 2 production is determined from Monte Carlo simulation [6]; a conservative un- 
certainty of 10% due to the choice of PDF’s is assigned at this stage of the analysis. The 
integrated luminosity and event selection efficiency for 2’ and 2 are taken to be the same. 
The production limit is obtained for a range of 2’ masses by constructing probability distri- 
butions for 2’ production based on the events observed in a mass window given by mz,f4Pzl. 
The region above the limit curve in Fig. 2 is excluded. From the intersection of the limit 
and theory [7] curves, we exclude the existence of a 2’ from the process pp + 2’ + ee for 
rnzt < 660 GeV/c2 , at 95% CL. Combining this analysis with M 15 pb-l of data taken by 
DO during 1992-1993 increases the limit to rnZ/ > 670GeV/c2 . 

V. CONCLUSIONS 

Based on a preliminary analysis of M 105 pb-l of data taken by the D0 pi collider detec- 
tor, we exclude the existence of a heavy neutral gauge boson of mass less than 670 GeV/c2 
(95% CL), assuming a Z’ with the same coupling strengths to quarks and leptons as the 
standard model Z boson. 
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